Ad Radar

Basic Drift Chassis Setup - Tech

There’s much more to drifting than just being low.

By Mike Kojima, Photography by

When adjusting your coilovers, don’t commit the cardinal sin of suspension setup: lowering your car too much. Some lowering is good, but too much is bad. Even though it may look hellaflush, the suspension isn’t designed to work at those angles and results in poor performance. Generally, you don’t want to lower the car more than 2 inches — anything more than that, and you start to screw up the suspension geometry. You also want to make sure you have plenty of wheel travel; we like to have 2.5–3 inches of bump travel and 1.5–2 inches of droop (certainly no less than 1 inch of droop). You want to avoid having the car bottom out while under drift, as that will drastically change the car’s balance and usually result in spinning out or understeering badly.

When adjusting your damping, avoid the common mistake of making your shocks too stiff. Too stiff, and the car will hop and bounce in drift, making it hard to control even though it might feel responsive to steering; too little damping, and the car will feel floaty and unresponsive like a boat. Correct adjustment will have a decent ride but firm control. Don’t be afraid to tinker and experiment to find the right setup for your car. You can also use the shocks’ adjustment to control how the car starts to drift and how it feels. Soft rear shock adjustments will usually make the rear of the car grip up and have more forward bite, although it can also make the car want to straighten up and be twitchy in drift; stiffer in the rear can make the car looser and easier to get into drift. Stiffer damping in the front makes the car turn-in sharper with more response — softer slows it down.

Sway Bars
A lot of people in the drift world discount the importance of sway bars. Sway bars make a car feel much more stable in drift and allow big changes to be made in how easily the car can be set in drift and how much angle the car will run in drift. It’s best to get a matched set of bars that are adjustable. Whiteline and Progress make adjustable bars for many popular cars. If an adjustable bar isn’t available for your car, you can make your bars adjustable by having a fabricator weld a plate with adjusting holes on the end of your bars using universal spherical endlinks (like what Whiteline sells).

When you’re practicing, it’s much easier to adjust your sway bars to change your car’s balance compared to changing springs. Typically, you want to run a set of bars that’s about 20 to 50 percent stiffer in the front than the rear; adjustments typically make a 10 to 30 percent difference in overall roll stiffness, so you can really change the car’s feel through bar adjustments. With most reasonably sized bars, about 30 to 60 percent of the total overall roll resistance also comes from the bars. This is one reason why drifting a car with sway bars is so much easier: the car responds faster and is more predictable.

When setting up your bars, be sure that they don’t bind or contact the chassis because the suspension strokes through its travel.

When setting up your bars, be sure that they don’t bind or contact the chassis because the suspension strokes through its travel. This sort of stuff can make the handling very unpredictable. Sometimes people remove the front antisway bar because it interferes with steering angle — the front tires hit it when turned full lock. In this case, it’s better to extend the lower control arm so they won’t hit anymore. It’s not good to stack a bunch of front wheel spacers to do this because it hurts the scrub radius (and opens another set of problems).

Although replacing your bushings with harder ones isn’t absolutely necessary, they don’t cost a lot and will keep your alignment consistent under hard loading. They can also help reduce wheelhop that can break drivetrain parts. You can get replacement bushings for most cars from many sources like Energy Suspension; harder or solid bushings are particularly useful in the Nissan S-chassis subframe, as they can shift as much as half an inch under load.

By Mike Kojima
Enjoyed this Post? Subscribe to our RSS Feed, or use your favorite social media to recommend us to friends and colleagues!